
 
 

 

 

 

Using Traffic Data to 
Inform Transmission 
Dynamics for COVID-
19 in Southern 
California  

September 

2021 

A Research Report from the Pacific Southwest 

Region University Transportation Center 

 

Sze-chuan Suen 

Maged Dessouky 

Suyanpeng Zhang 

Han Yu 

Anthony Nguyen 

 

Daniel J. Epstein Department of Industrial and Systems Engineering, 

University of Southern California 

 

 

 

 

 

  



Using Traffic Data to Inform Transmission Dynamics for COVID-19 in Southern California 

2 

TECHNICAL REPORT DOCUMENTATION PAGE 
1. Report No.
PSR-20-SP95

2. Government Accession No.
N/A

3. Recipient’s Catalog No.
N/A

4. Title and Subtitle
Using Traffic Data to Inform Transmission Dynamics for COVID19 in Southern 
California

5. Report Date
September 2021

6. Performing Organization Code
N/A

7. Author(s)
Sze-chuan Suen, 0000-0001-9453-5863
Maged Dessouky, 0000-0002-9630-6201
Suyanpeng Zhang, 0000-0002-8957-1293
Han Yu, 0000-0001-5019-805X
Anthony Nguyen, 0000-0002-7616-8358

8. Performing Organization Report No.
PSR-20-SP95

9. Performing Organization Name and Address
METRANS Transportation Center
University of Southern California

University Park Campus, RGL 216
Los Angeles, CA 90089-0626

10. Work Unit No.
N/A

11. Contract or Grant No.
USDOT Grant 69A3551747109

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
1200 New Jersey Avenue, SE, Washington, DC 20590

13. Type of Report and Period Covered
Final report (August 1, 2020-July 29,
2021)

14. Sponsoring Agency Code
USDOT OST-R

15. Supplementary Notes
N/A

16. Abstract
Understanding COVID patterns for disease control means that we need to incorporate population flow in our modeling, as these
trends influence disease transmission. We use ADMS traffic data to build a compartmental disease model of COVID-19. We draw
on methodology from infectious disease models, traffic data, and facility location models together in a novel way, and to our
knowledge, no prior work has leveraged such detailed traffic information over such a large urban area to inform disease control
efforts.

17. Key Words
Infectious disease modeling, compartmental model, traffic flow,
origin-destination, COVID-19

18. Distribution Statement
No restrictions.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
22

22. Price
N/A

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 



Using Traffic Data to Inform Transmission Dynamics for COVID-19 in Southern California 
 

3 
 

 

Contents 
Acknowledgements 5 

Abstract 6 

Executive Summary 7 

Introduction 9 

Methods 9 

Overview 9 

Traffic Flow Analysis 10 

Dynamic Transmission Model 13 

Results 16 

Dynamic Transmission Model Calibration Outcomes 16 

Model Results 18 

Conclusions 19 

Directions for Future Research 19 

References 20 

Data Management Plan 21 

Appendix 22 

Dynamic Transmission Model Calibration Outcomes 22 

 



Using Traffic Data to Inform Transmission Dynamics for COVID-19 in Southern California 
 

4 
 

About the Pacific Southwest Region University Transportation 

Center 

The Pacific Southwest Region University Transportation Center (UTC) is the Region 9 University 
Transportation Center funded under the US Department of Transportation’s University Transportation 
Centers Program. Established in 2016, the Pacific Southwest Region UTC (PSR) is led by the University of 
Southern California and includes seven partners: Long Beach State University; University of California, 
Davis; University of California, Irvine; University of California, Los Angeles; University of Hawaii; 
Northern Arizona University; Pima Community College. 

The Pacific Southwest Region UTC conducts an integrated, multidisciplinary program of research, 
education and technology transfer aimed at improving the mobility of people and goods throughout the 
region.  Our program is organized around four themes:  1) technology to address transportation 
problems and improve mobility; 2) improving mobility for vulnerable populations; 3) Improving 
resilience and protecting the environment; and 4) managing mobility in high growth areas. 

U.S. Department of Transportation (USDOT) Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts and the 

accuracy of the information presented herein.  This document is disseminated in the interest of 

information exchange.  The report is funded, partially or entirely, by a grant from the U.S. Department of 

Transportation’s University Transportation Centers Program. However, the U.S. Government assumes no 

liability for the contents or use thereof.  

Disclosure 

Principal Investigators Sze-chuan Suen and Maged Dessousky conducted this research titled, “Identifying 

Priority Testing Locations in Southern California for COVID-19 With Transmission Dynamics and Network 

Data” at the Daniel J. Epstein Department of Industrial and Systems Engineering in the Viterbi School of 

Engineering at the University of Southern California. The research took place from Aug 1, 2020 to July 

30, 2021 and was funded by the Office of the Provost at the University of Southern California through 

the Zumberge Special Solicitation: Epidemic & Virus Related Research and Development Award in the 

amount of 85,000. The research was conducted as part of the Pacific Southwest Region University 

Transportation Center research program.  

  



Using Traffic Data to Inform Transmission Dynamics for COVID-19 in Southern California 
 

5 
 

Acknowledgements 
We wish to acknowledge financial support of the Office of the Provost at the University of Southern 

California through the “Zumberge Special Solicitation: Epidemic & Virus-Related Research and 

Development Award.”   



Using Traffic Data to Inform Transmission Dynamics for COVID-19 in Southern California 
 

6 
 

Abstract 
 
Understanding COVID patterns for disease control means that we need to incorporate 

population flow in our modeling, as these trends influence disease transmission. We use ADMS 

traffic data to build a compartmental disease model of COVID-19. We draw on methodology 

from infectious disease models, traffic data, and facility location models together in a novel 

way, and to our knowledge, no prior work has leveraged such detailed traffic information over 

such a large urban area to inform disease control efforts. We find that it is possible to 

incorporate traffic data into compartmental models. The model estimates that the number of 

recovered and vaccinated individuals in the population is substantial, indicating that the 

completely susceptible proportion of the population is likely small – good news if we want to 

reduce the number of new cases. However, these results are sensitive to model assumptions 

around traffic flow patterns, infection rates, and other disease parameters, and we leave more 

rigorous testing around these values to future work.  
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Research Report  

Executive Summary 
This project had two objectives. The first was to develop an optimization problem to estimate 

origin and destinations of traffic flow from vehicular data on arterial highways in LA County. We 

cleaned and organized traffic flow data, chose nodes and highways for inclusion in the project, 

and ran data on weekdays and weekends to demonstrate feasibility. The second goal was to 

formulate a dynamic transmission model of COVID over eight service planning areas using the 

traffic flow data to estimate population flow/transmission patterns. We incorporated data from 

the medical literature to inform the model which uses a classic compartmental model structure. 

Motivation: There is an urgent need for performing widespread COVID-19 testing to control 

disease spread, as many infected individuals are asymptomatic or have mild flu-like symptoms, 

yet are still transmissive. These patients may not seek care and therefore cannot be diagnosed 

or undergo quarantine, resulting in subsequent fatal downstream infections. Officials have 

called for increasing testing as a critical step needed to reopen the country. 

However, frequent, regular, and complete population testing across the entire US population, 

or even over a complete metropolitan area, is prohibitively challenging as testing supplies are 

limited and require trained health staff which could be better put to use in caring for those in 

need. It is therefore critical to focus testing in high-priority areas, where tests are likely to 

capture positive cases. While this includes high risk individuals (contacts of positive cases, 

elderly in nursing homes, etc.), identifying infected individuals more generally as tests become 

more widely available will provide crucial information on overall disease prevalence and spread 

to inform future disease control efforts. Synthesizing and using traffic patterns as 

transportation patterns change will shed light on possible transmission patterns in populated 

urban areas such as Los Angeles County. 

We therefore propose using the USC Archived Data Management System (ADMS)(USC Viterbi 

School of Engineering Integrated Media System Center & Metrans Transprtation Center USC 

CSULB, n.d.), which collects and stores traffic data, to create an epidemic model informed by 

up-to-date origin-destination traffic data. We will use the model to identify which of the service 

planning regions (SPAs) in Los Angeles (LA) county are at highest risk for unidentified cases and 

direct testing resources there. This allows our recommendations to incorporate change in 

transportation patterns due to disease mitigation policies (e.g., social distancing 

recommendations, etc.).  

Research Methodology: To achieve our dual aims, we relied on the Archived Data Management 

System (ADMS) for information on LA traffic patterns. ADMS collects, archives, and integrates a 
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variety of transportation datasets from Los Angeles, Orange, San Bernardino, Riverside, and 

Ventura Counties.  ADMS includes access to real-time traffic datasets from i) 9500 highway and 

arterial loop detectors providing data approximately every 1 minute, and ii) 2500 bus and train 

GPS location (AVL) data operating throughout Los Angeles County. This data is collected from 

road sensors that record traffic.  

To achieve Aim 1, we used the ADMS data for the 8 service planning areas (SPAs) in LA county 

to infer dynamic origin-destination patterns using a mathematical optimization approach, as 

the data was not able to directly tell us where the traffic flow originated nor where its final 

destination would be. The optimization problem was solved using computational resources 

provided by USC Viterbi School of Engineering (their HPCC server). 

In Aim 2, we used the inferred origin-destination values in a dynamic transmission network 

model across different areas of LA. To capture COVID-19 disease dynamics, we used a 

compartment model of disease where populations may flow between different 

health/treatment states (Susceptible, Exposed, Infected, Unidentified Infected, Identified 

Infected, Hospitalized, Recovered, Vaccinated, and Dead). The rate of flow between these 

compartments is determined by a variety of factors, such as the rate of transmission, disease 

progression, clearance, treatment, death, etc. Compartmental models like these can be 

captured in a system of differential equations, which allow for tractable analysis and simulation. 

Mixing between groups from different geographical areas drives the rate of new infections 

along with the number of susceptible and infected individuals in both areas. This mixing pattern 

between areas is described by a matrix which was informed by traffic data.  

Results: Model calibration and validation showed good model performance. To validate the 

model, we compared model outcomes on COVID deaths, the number of identified cases (case 

counts), and hospitalizations, all overall and for each SPA. While we expected, and saw, larger 

error values for SPA-level outcomes, total error values were within reasonable values. 

These results demonstrated that incorporation of traffic data into compartmental models is 

possible, and that geographically-stratified models may be useful for infectious disease 

prediction and control. In future work, we plan to further refine this model before using it to 

generate recommendations on where vaccination and testing centers ought to be located to be 

most effective. 
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Introduction  
There is an urgent need for performing widespread COVID-19 testing to control disease spread, 

as many infected individuals are asymptomatic or have mild flu-like symptoms, yet are still 

transmissive. These patients may not seek care and therefore not be diagnosed or undergo 

quarantine, resulting in subsequent fatal downstream infections. Officials have called for 

increasing testing as a critical step needed to reopen the country. 

However, frequent, regular, and complete population testing across the entire US population, 

or even over a complete metropolitan area, is prohibitively challenging as testing supplies are 

limited and require trained health staff which could be better put to use in caring for those 

confirmed to be infected. It is therefore critical to focus testing in high-priority areas, where 

tests are likely to capture positive cases. While this includes high risk individuals (contacts of 

positive cases, elderly in nursing homes, etc.), identifying infected individuals more generally as 

tests become more widely available will provide crucial information on overall disease 

prevalence and spread to inform future disease control efforts. Synthesizing and using traffic 

patterns as transportation patterns change will shed light on possible transmission patterns in 

populated urban areas such as Los Angeles County. 

We therefore propose using the USC Archived Data Management System (ADMS), which 

collects and synthesizes traffic data, to create an epidemic model informed by up-to-date 

origin-destination traffic data. We will use the model to identify which of the service planning 

regions (SPAs) in Los Angeles (LA) county are at highest risk for unidentified cases and direct 

testing resources there. This allows our recommendations to incorporate change in 

transportation patterns due to disease mitigation policies (e.g., social distancing 

recommendations, etc.).  

Methods  

Overview 
To achieve our dual aims, we rely on the Archived Data Management System (ADMS) for 

information on LA traffic patterns. ADMS collects, archives, and integrates a variety of 

transportation datasets from Los Angeles, Orange, San Bernardino, Riverside, and Ventura 

Counties.  ADMS includes access to real-time traffic datasets from i) 9500 highway and arterial 

loop detectors providing data approximately every 1 minute, and ii) 2500 bus and train GPS 

location (AVL) data operating throughout Los Angeles County. This data is collected from road 

sensors that record traffic.  

To achieve Aim 1, we use the ADMS data for the 8 service planning areas (SPAs) in LA county 

(Los Angeles County Department of Public Health, 2020) to infer dynamic origin-destination 

patterns using a mathematical optimization approach, as the data was not able to directly tell 

us where the traffic flow originated nor where its final destination would be. The optimization 
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problem was solved using computational resources provided by USC Viterbi School of 

Engineering (their HPCC server). 

In Aim 2, we used the inferred origin-destination values in a dynamic transmission network 

model across different areas of LA. To capture COVID-19 disease dynamics, we propose using a 

compartment model of disease where populations may flow between different 

health/treatment states (Susceptible, Exposed, Infected, Unidentified Infected, Identified 

Infected, Hospitalized, Recovered, Vaccinated, and Dead). While there exist other compartment 

models for COVID-19, these do not focus on LA County, as our work does (Chatterjee et al., 

2020; Giordano et al., 2020; Grant, 2020; Ivorra et al., 2020); we expect the county-specific 

transportation and case counts in LA will be important for future disease prediction. The rate of 

flow between the compartments in the model is determined by a variety of factors, such as the 

rate of transmission, disease progression, clearance, treatment, death, etc. Compartmental 

models like these can be captured in a system of differential equations, which allow for 

tractable analysis and simulation. Mixing between groups from different geographical areas 

drives the rate of new infections along with the number of susceptible and infected individuals 

in both areas. This mixing pattern between areas is described by a matrix which was informed 

by traffic data.  

We describe these steps in more detail in the next sections. 

 

Traffic Flow Analysis  
We need to first infer origin-destination patterns from traffic flow information. We do this by 

identifying a network of nodes over the service planning areas, which are defined by the Los 

Angeles County Department of Public Health (see Figure 1)(Los Angeles County Department of 

Public Health, 2020). Nodes are selected intersections of major highways in Los Angeles County. 

Figure 1. Service planning areas (left), selected road sensor nodes (middle), and resultant 
network (right) for analysis. 
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Data 
We used the traffic data from the ADMS database. This data provides traffic information using 

sensors on highways and local roads. The information includes data on vehicle speed and 

volume (the number of vehicles that passed by per sensor every 30 seconds).  

In order to process the data used for the optimization model, we sum the volume of each 

sensor on the network link for each 30 second interval. For calculating the speed on the link, we 

use the average speed from all sensors on that link. Also, in each evaluation time interval, we 

sum up the volume within that time interval and average speed in the interval. The 

optimization model also uses traffic information on local roads. We aggregate all volume data 

on local roads within a small range (1 degree in latitude and longitude direction) of each node 

and use it as a lower bound constraint on the number of originating and departing demand at 

that node. 

Inference of Origins and Destinations Through Optimization  
The main objective for our model is to predict the traffic flow between each origin and 

destination. The approach is similar to prior work in this area (Ma & Qian, 2018). 

To predict each link's traffic flow -- how many cars start from origin to destination, or OD -- we 

use a non-negative least square model to ensure each link's estimated traffic flow has the 

smallest least square error compared with the true traffic flow. We formulated a basic 

optimization model along with a formulation with additional constraints (local traffic flow, 

symmetricity constraints, etc.), as initial outcomes seemed unlikely and were highly sensitive to 

assumptions. Adding additional data and constraints therefore seemed to be a reasonable way 

to arrive at more realistic outcomes.  The formulation is presented below. 

Basic Optimization model: 

The model uses traffic volume and speed data to estimate one day dynamic OD. We first 

discretize the continuous-time traffic flow into time intervals and assume the average speed 

remains the same within each time interval. The objective function computes the L2 norm error 

between the observed link a flow xa(t) on time t. All variables with the hat notation denotes 

estimated values.  T is the time interval set.  qk
ij (t2) represents the estimate traffic flow from 

origin i to destination j following path k at time t2. We choose the first three shortest paths 

between each OD pair. Our problem is therefore: 

 

We next turn to the relationship between the link flow �̂�a(t1) and path flow �̂�k
ij(t2). Define 
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Here, Ψ is the set of OD pairs and Φrs is the set of paths that originated from r to s. ρrs
ka (t1, t2) is 

the portion of the kth path flow departing within time interval t2 between OD pair rs which 

arrives at link a within time interval t1. As we assumed that the vehicles are spread evenly in 

time and space, ρrs
ka (t1, t2) is calculated by the speed and volume data from each link. 

For each traffic pattern, we compute the route choice portions for all OD pairs. Define route 

choice portion prs
k(t1) that it distributes OD demand qrs(t1) to path flow qrs

k(t1) using the 

following equation: 

 

We use a Logit-based model based on mean travel time for each traffic pattern: 

 

where ck
rs(t1) represents the mean travel time of path flow k in OD rs departing at time t1 for all 

days. θ is a dispersion factor in the Logit model.  

Then the basic optimization model becomes: 

 

Adding local road traffic information to the network: We can use the traffic flow information 

from local roads to give a lower bound on the total traffic flow that originated from each node 

at time t1. Traffic flow lm(t1) that originated from node m, and traffic flow dm(t1) that ends at 

node m. LB represents the lower bound on the traffic flow that starts and ends at node m on 

time t1, which is calculated by local road traffic information, and α is the discount parameter. 

Here we set α = 0.8. 

 
We add these traffic flow constraints into the model by using slack variables. 

Adding a constraint around symmetricity: Based on our intuition, the input traffic flow and 

output traffic flow should not have big difference. Thus, we also introduce a constraint to 
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ensure this property. The traffic flow fij from region i to region j should be similar to the traffic 

flow fji from region j to region i over a day.  

 

Here we define fij = . Similarly, we append this symmetric constraint 

into our model. We solve the optimization problem to identify OD outcomes for each of our 

SPAs over each time interval. An example is shown in Figure 2. 

Figure 2. Weekday traffic flow 2020.05.18-2020.05.29 (with local road lower bound and 
symmetricity constraints). 

 

This process was repeated for every interval. These outcomes were then used in the dynamic 

transmission model of disease, which we turn to next. 

 

Dynamic Transmission Model 

Model Structure 
In Aim 2, we used the inferred origin-destination values in a dynamic transmission network 

model across different areas of LA. To capture COVID-19 disease dynamics, we propose using a 

compartment model of disease where populations may flow between different 

health/treatment states (Susceptible, Exposed, Infected, Unidentified Infected, Identified 

Infected, Hospitalized, Recovered, Vaccinated, and Dead, shown in Figure 3) (Grant, 2020; 

Kermack et al., 1927). The rate of flow between these compartments is determined by a variety 

of factors, such as the rate of transmission, disease progression, clearance, treatment, death, 

etc. Compartmental models like these can be captured in a system of differential equations, 

which allow for tractable analysis and simulation. Mixing between groups from different 

geographical areas drives the rate of new infections along with the number of susceptible and 



Using Traffic Data to Inform Transmission Dynamics for COVID-19 in Southern California 
 

14 
 

infected individuals in both areas. This mixing pattern between areas is described by a matrix 

which was be informed by traffic data.  

The corresponding ordinary differential 

equations are: 

 

 
 

In the next sections, we discuss how we identify values for these equations; after 
parameterization, we implement these equations in Python (using scipy.integrate.odeint) and 
simulate disease spread over time. 
 

Time Intervals 
To better match empirically observed disease trends, we allow the model parameters to vary 
over time, which we have split into different intervals, listed in Table 1 below. Values within the 
same interval remain constant; these constraints reduce overfitting but allow us the flexibility 
associated with a time-varying model. While the model remains sensitive to these interval 

Figure . Model Schematic. 
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assumptions, we leave further exploration of these choices to future work due to the limited 
duration of this project. 
 
Table 1. Intervals in disease model 

Interval (Days from 3/1 2020) Months Description 

0-45 March - Mid April First lock-down 

46-90 Mid April - End May Lock-down & social events 

91-135 June - Mid July Gradual re-opening & looser rules 

136-210 Mid July - End Sep Second wave 

211-300 Oct - End Dec Holiday season 

301-360 End Dec - March Vaccination1 

361-390 March - April Vaccination2 

391-480 April - June Vaccination3 

481-516 June - July Variants 

 

Calibration 
We draw model parameters from values in the literature. However, not all values are directly 
observable (e.g., the rate of becoming transmissive for unidentified cases). We therefore 
calibrate the model by changing the following calibrated parameters: 
 
Table 2: Calibration Parameters 

Parameter Description 

𝑆𝐼 Multiplier for 𝛽𝐼, where 𝛽𝐼 =  𝑆𝐼 × traffic flow 

𝑆𝑈 Multiplier for 𝛽𝑈, where 𝛽𝑈 =  𝑆𝑈 × traffic flow 

𝛾𝐼 Recovery rate for identified infectious individuals 

𝛾𝑈 Recovery rate for unidentified infectious individuals 

𝛾𝐻 Recovery rate for hospitalized individuals 

𝜇𝐼 Death rate for identified infectious individuals 

𝜇𝑈 Death rate for unidentified infectious individuals 

𝜇𝐻 Death rate for hospitalized individuals 

𝛿𝐼  Rate from exposed to identified infectious 

𝛿𝑈 Rate from exposed to unidentified infectious 

𝜂 Rate from identified infectious to hospitalized 

𝜃 Multiplier on the rate from unidentified infectious to hospitalized, the rate is  𝜂 ∗ 𝜃 

𝜔 Rate from vaccinated to exposed 

𝜉 Vaccination rate for susceptible group 

𝜉′ Vaccination rate for recovered group 

 

These values are set such that the simulation output is matches the following calibration 
targets:  
 
Table 3: Calibration Targets. 

Targets Description 

𝐷𝑖,𝑡 Cumulative Death number for SPA i at time t 

𝐶𝑖,𝑡 Cumulative identified Case number for SPA i at time t 
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𝑉𝑖,𝑡 Vaccination number (first dose) for SPA i at time t 

𝐻𝑡 Hospitalization number at time t 

 

The calibration process involves solving the following optimization problem: 
 

 
 

where �̂�𝑖,𝑡 is the simulated death number for SPA 𝑖 at time 𝑡. �̂�𝑖,𝑡 is the simulated hospitalized 

number for SPA 𝑖 at time 𝑡. �̂�𝑖,𝑡 is the simulated recovered number for SPA 𝑖 at time 𝑡. 𝐼𝑖,𝑡 is the 

simulated identified infectious number for SPA 𝑖 at time 𝑡. �̂�𝑖,𝑡 is the simulated vaccinated 

number for SPA 𝑖 at time 𝑡. 𝐷𝑖,𝑡 is the actual death number for SPA 𝑖 at time 𝑡. 𝐶𝑖,𝑡 is the actual 
cumulative identified case number for SPA 𝑖 at time 𝑡. 𝑉𝑖,𝑡 is the actual vaccinated number for 

SPA 𝑖 at time 𝑡. 𝐻𝑡 is the actual hospitalized number for SPA 𝑖 at time 𝑡.  All empirical data was 
drawn from the Los Angeles Department of Public Health COVID dashboard (Los Angeles 
County Department of Public Health, 2021). 
 
For each of the intervals listed above, we run the ordinary least squares model with this cost 
function as the objective. We use the calibrated parameter set from the last interval as the 
initialization point for the current interval. The calibration process is done in Python 3.7.   
 

Results 

Dynamic Transmission Model Calibration Outcomes 
Calibration outcome values are shown in the Appendix.  We show the simulation output 
compared to empirical data in Figure 4. Panel a through d depicts the deaths, vaccination 
counts, cases, and hospitalizations, respectively.  While there is some noise, we can see that the 
model outputs seem to capture the general trends seen in the empirical data. While it may be 
useful to compare outcomes with and without traffic data, this would involve a recalibration of 
the model, which, due to time constraints, was left for future work. 
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Figure 4. Calibration Results. 
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Model Results 
With the model calibrated, we can turn to using the model to perform prediction and 
simulating counterfactual scenarios. We plot projections for COVID-19 going up to November 
2021 in the following Figure 5 and 6, which also provides model outcomes on unobserved 
values (such as unidentified infected cases). 
 

Figure 5. Model Outcomes. 

 
 

We additionally provide Figure 6 to better visualize the action between 0 and 1 million in Figure 5. 
 

Figure 6. Model Outcomes (Zoomed In) 

 
These outcomes show that we expect most of the population to be either recovered or 
vaccinated (and not susceptible) by November 2021, which should greatly reduce the number 
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of new infections. However, this model does not take into account new variants, which we 
already know will play an increasingly large role as mutations occur.  
 
Despite this limitation, we believe the model’s insights into the ratio of unidentified versus 
identified cases, effectiveness in vaccination, etc., can still be useful, particularly in explaining 
trends in the data over the past year.  Future projections will heavily depend on policy 
responses (lockdowns, vaccination booster shots, flu season, new travel, etc.), and therefore 
continues to be challenging. 
 
 

Conclusions 
This work demonstrates that transmission models can be useful for understanding disease 

trends, and that such models can incorporate traffic flow patterns. We drew on methodology 

from infectious disease models, traffic data, and facility location models together in a novel 

way, and to our knowledge, no prior work has leveraged such detailed traffic information over 

such a large urban area to inform disease control efforts.  

We find that it is possible to incorporate traffic data into compartmental models. The model 

estimates that the number of recovered and vaccinated individuals in the population is 

substantial, indicating that the completely susceptible proportion of the population is likely 

small -- good news if we want to reduce the number of new cases. However, challenges for 

disease control remain, as variants (which were not included in the model) begin to play a 

larger role in the number of new cases and deaths. 

 

Directions for Future Research 
There remains much work to be done to translate these findings into actionable policy. We 
ultimately intend for these results to inform the placement of testing sites across the health 
districts. Achieving this goal would necessitate further stratification of the dynamic 
transmission model (and traffic data) by health district in addition to service planning area.  
 
This presents additional challenges when calibrating the model, as limited data is available at 
such fine geographical resolution. Upon calibration, the model would then be used for 
predicting disease burden in each location. This information could then be used to prioritize 
districts for testing. Recommendations for the placement of testing center would additionally 
consider the ease to which individuals could access the site by incorporating road information 
to and from the selected locations for testing within the prioritized health districts. These 
recommendations could additionally consider proximity of testing sites to vulnerable 
populations (nursing homes, dialysis centers, etc.).  
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Data Management Plan   
 

Products of Research  

No data was collected for this study. We used ADMS data and values from the existing literature to 

parameterize the model. 

 

Data Format and Content  

ADMS data was accessed through the online portal. 

 

Data Access and Sharing  

Requests to access to the ADMS data should be sent to Genevieve Giuliano <giuliano@price.usc.edu>. 

 

Reuse and Redistribution  

ADMS access is restricted. Data access must be requested. 
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Appendix  

Dynamic Transmission Model Calibration Outcomes 
 

Traffic 
Status 

Period 𝑆𝐼 𝑆𝑈 𝛾𝐼 𝛾𝑈 𝛾𝐻 𝜇𝐼 𝜇𝑈 𝜇𝐻 

lockdown March - Mid April 0.00292 0.00229 0.081 0.085 0.061 0.00091 0.00050 0.01530 

lockdown Mid-April - End May 0.00247 0.00208 0.255 0.234 0.389 0.00163 0.00221 0.01320 

reopening June - Mid July 0.00338 0.00432 0.255 0.235 0.389 0.00209 0.00340 0.01330 

2nd wave Mid July - End Sep 0.00365 0.00331 0.209 0.943 0.357 0.00101 0.00197 0.01250 

holidays Oct - End Dec 0.00984 0.00664 0.210 0.943 0.357 0.00211 0.00258 0.01260 

vaccination1 End Dec - March 0.00869 0.00825 0.331 0.952 0.493 0.00093 0.00113 0.01020 

vaccination2 March - April 0.01480 0.02380 0.117 0.500 0.106 0.02620 0.00884 0.13200 

vaccination3 April - June 0.00120 0.00100 0.100 0.500 0.100 0.00100 0.00100 0.00100 

 
 
(Calibration outcomes, continued.) 

Traffic Status Period 𝛿𝐼_i 𝛿𝑈_u 𝜂 𝜃 

lockdown March - Mid April 0.08370 0.19700 0.02370 0.50000 

lockdown Mid-April - End May 0.07000 0.15900 0.02370 0.50000 

reopening June - Mid July 0.07000 0.15900 0.02370 0.50000 

second wave Mid July - End Sep 0.07000 0.18500 0.02370 0.50000 

holidays Oct - End Dec 0.07110 0.18500 0.02370 0.50000 

vaccination1 End Dec - March 0.05760 0.31400 0.02370 0.50000 

vaccination2 March - April 0.09990 0.00106 0.03410 0.00326 

vaccination3 April - June 0.00262 0.00100 0.00151 0.00100 

variants June - July 0.06600 0.02870 0.00768 0.00107 

 
 
(Calibration outcomes, continued.) 

Traffic Status Period 𝜉 𝜉′ for 
Identified 

𝜉′ for 
Unidentified  

𝜔 

lockdown March - Mid April N/A N/A N/A N/A 

lockdown Mid-April - End May N/A N/A N/A N/A 

reopening June - Mid July N/A N/A N/A N/A 

second wave Mid July - End Sep N/A N/A N/A N/A 

holidays Oct - End Dec N/A N/A N/A N/A 

vaccination1 End Dec - March 0.00283 0.00890 0.08360 0.00266 

vaccination2 March - April 0.01400 0.00274 0.00100 0.00135 

vaccination3 April - June 0.02030 0.00586 0.00100 0.00100 

variants June - July 0.00700 0.00188 0.00103 0.03260 
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	Understanding COVID patterns for disease control means that we need to incorporate population flow in our modeling, as these trends influence disease transmission. We use ADMS traffic data to build a compartmental disease model of COVID-19. We draw on methodology from infectious disease models, traffic data, and facility location models together in a novel way, and to our knowledge, no prior work has leveraged such detailed traffic information over such a large urban area to inform disease control efforts. 
	 
	Research Report  
	Executive Summary 
	This project had two objectives. The first was to develop an optimization problem to estimate origin and destinations of traffic flow from vehicular data on arterial highways in LA County. We cleaned and organized traffic flow data, chose nodes and highways for inclusion in the project, and ran data on weekdays and weekends to demonstrate feasibility. The second goal was to formulate a dynamic transmission model of COVID over eight service planning areas using the traffic flow data to estimate population fl
	Motivation: There is an urgent need for performing widespread COVID-19 testing to control disease spread, as many infected individuals are asymptomatic or have mild flu-like symptoms, yet are still transmissive. These patients may not seek care and therefore cannot be diagnosed or undergo quarantine, resulting in subsequent fatal downstream infections. Officials have called for increasing testing as a critical step needed to reopen the country. 
	However, frequent, regular, and complete population testing across the entire US population, or even over a complete metropolitan area, is prohibitively challenging as testing supplies are limited and require trained health staff which could be better put to use in caring for those in need. It is therefore critical to focus testing in high-priority areas, where tests are likely to capture positive cases. While this includes high risk individuals (contacts of positive cases, elderly in nursing homes, etc.), 
	We therefore propose using the USC Archived Data Management System (ADMS)(USC Viterbi School of Engineering Integrated Media System Center & Metrans Transprtation Center USC CSULB, n.d.), which collects and stores traffic data, to create an epidemic model informed by up-to-date origin-destination traffic data. We will use the model to identify which of the service planning regions (SPAs) in Los Angeles (LA) county are at highest risk for unidentified cases and direct testing resources there. This allows our
	Research Methodology: To achieve our dual aims, we relied on the Archived Data Management System (ADMS) for information on LA traffic patterns. ADMS collects, archives, and integrates a 
	variety of transportation datasets from Los Angeles, Orange, San Bernardino, Riverside, and Ventura Counties.  ADMS includes access to real-time traffic datasets from i) 9500 highway and arterial loop detectors providing data approximately every 1 minute, and ii) 2500 bus and train GPS location (AVL) data operating throughout Los Angeles County. This data is collected from road sensors that record traffic.  
	To achieve Aim 1, we used the ADMS data for the 8 service planning areas (SPAs) in LA county to infer dynamic origin-destination patterns using a mathematical optimization approach, as the data was not able to directly tell us where the traffic flow originated nor where its final destination would be. The optimization problem was solved using computational resources provided by USC Viterbi School of Engineering (their HPCC server). 
	In Aim 2, we used the inferred origin-destination values in a dynamic transmission network model across different areas of LA. To capture COVID-19 disease dynamics, we used a compartment model of disease where populations may flow between different health/treatment states (Susceptible, Exposed, Infected, Unidentified Infected, Identified Infected, Hospitalized, Recovered, Vaccinated, and Dead). The rate of flow between these compartments is determined by a variety of factors, such as the rate of transmissio
	Results: Model calibration and validation showed good model performance. To validate the model, we compared model outcomes on COVID deaths, the number of identified cases (case counts), and hospitalizations, all overall and for each SPA. While we expected, and saw, larger error values for SPA-level outcomes, total error values were within reasonable values. 
	These results demonstrated that incorporation of traffic data into compartmental models is possible, and that geographically-stratified models may be useful for infectious disease prediction and control. In future work, we plan to further refine this model before using it to generate recommendations on where vaccination and testing centers ought to be located to be most effective. 
	  
	Introduction  
	There is an urgent need for performing widespread COVID-19 testing to control disease spread, as many infected individuals are asymptomatic or have mild flu-like symptoms, yet are still transmissive. These patients may not seek care and therefore not be diagnosed or undergo quarantine, resulting in subsequent fatal downstream infections. Officials have called for increasing testing as a critical step needed to reopen the country. 
	However, frequent, regular, and complete population testing across the entire US population, or even over a complete metropolitan area, is prohibitively challenging as testing supplies are limited and require trained health staff which could be better put to use in caring for those confirmed to be infected. It is therefore critical to focus testing in high-priority areas, where tests are likely to capture positive cases. While this includes high risk individuals (contacts of positive cases, elderly in nursi
	We therefore propose using the USC Archived Data Management System (ADMS), which collects and synthesizes traffic data, to create an epidemic model informed by up-to-date origin-destination traffic data. We will use the model to identify which of the service planning regions (SPAs) in Los Angeles (LA) county are at highest risk for unidentified cases and direct testing resources there. This allows our recommendations to incorporate change in transportation patterns due to disease mitigation policies (e.g., 
	Methods  
	Overview 
	To achieve our dual aims, we rely on the Archived Data Management System (ADMS) for information on LA traffic patterns. ADMS collects, archives, and integrates a variety of transportation datasets from Los Angeles, Orange, San Bernardino, Riverside, and Ventura Counties.  ADMS includes access to real-time traffic datasets from i) 9500 highway and arterial loop detectors providing data approximately every 1 minute, and ii) 2500 bus and train GPS location (AVL) data operating throughout Los Angeles County. Th
	To achieve Aim 1, we use the ADMS data for the 8 service planning areas (SPAs) in LA county (Los Angeles County Department of Public Health, 2020) to infer dynamic origin-destination patterns using a mathematical optimization approach, as the data was not able to directly tell us where the traffic flow originated nor where its final destination would be. The optimization 
	problem was solved using computational resources provided by USC Viterbi School of Engineering (their HPCC server). 
	In Aim 2, we used the inferred origin-destination values in a dynamic transmission network model across different areas of LA. To capture COVID-19 disease dynamics, we propose using a compartment model of disease where populations may flow between different health/treatment states (Susceptible, Exposed, Infected, Unidentified Infected, Identified Infected, Hospitalized, Recovered, Vaccinated, and Dead). While there exist other compartment models for COVID-19, these do not focus on LA County, as our work doe
	We describe these steps in more detail in the next sections. 
	 
	Traffic Flow Analysis  
	We need to first infer origin-destination patterns from traffic flow information. We do this by identifying a network of nodes over the service planning areas, which are defined by the Los Angeles County Department of Public Health (see Figure 1)(Los Angeles County Department of Public Health, 2020). Nodes are selected intersections of major highways in Los Angeles County. 
	Figure 1. Service planning areas (left), selected road sensor nodes (middle), and resultant network (right) for analysis. 
	   
	Figure
	Figure
	Figure
	Data 
	We used the traffic data from the ADMS database. This data provides traffic information using sensors on highways and local roads. The information includes data on vehicle speed and volume (the number of vehicles that passed by per sensor every 30 seconds).  
	In order to process the data used for the optimization model, we sum the volume of each sensor on the network link for each 30 second interval. For calculating the speed on the link, we use the average speed from all sensors on that link. Also, in each evaluation time interval, we sum up the volume within that time interval and average speed in the interval. The optimization model also uses traffic information on local roads. We aggregate all volume data on local roads within a small range (1 degree in lati
	Inference of Origins and Destinations Through Optimization  
	The main objective for our model is to predict the traffic flow between each origin and destination. The approach is similar to prior work in this area (Ma & Qian, 2018). 
	To predict each link's traffic flow -- how many cars start from origin to destination, or OD -- we use a non-negative least square model to ensure each link's estimated traffic flow has the smallest least square error compared with the true traffic flow. We formulated a basic optimization model along with a formulation with additional constraints (local traffic flow, symmetricity constraints, etc.), as initial outcomes seemed unlikely and were highly sensitive to assumptions. Adding additional data and cons
	Basic Optimization model: 
	The model uses traffic volume and speed data to estimate one day dynamic OD. We first discretize the continuous-time traffic flow into time intervals and assume the average speed remains the same within each time interval. The objective function computes the L2 norm error between the observed link a flow xa(t) on time t. All variables with the hat notation denotes estimated values.  T is the time interval set.  qkij (t2) represents the estimate traffic flow from origin i to destination j following path k at
	 
	Figure
	We next turn to the relationship between the link flow 𝑥̂a(t1) and path flow 𝑞̂kij(t2). Define 
	 
	Figure
	Here, Ψ is the set of OD pairs and Φrs is the set of paths that originated from r to s. ρrska (t1, t2) is the portion of the kth path flow departing within time interval t2 between OD pair rs which arrives at link a within time interval t1. As we assumed that the vehicles are spread evenly in time and space, ρrska (t1, t2) is calculated by the speed and volume data from each link. 
	For each traffic pattern, we compute the route choice portions for all OD pairs. Define route choice portion prsk(t1) that it distributes OD demand qrs(t1) to path flow qrsk(t1) using the following equation: 
	 
	Figure
	We use a Logit-based model based on mean travel time for each traffic pattern: 
	 
	Figure
	where ckrs(t1) represents the mean travel time of path flow k in OD rs departing at time t1 for all days. θ is a dispersion factor in the Logit model.  
	Then the basic optimization model becomes: 
	 
	Figure
	Adding local road traffic information to the network: We can use the traffic flow information from local roads to give a lower bound on the total traffic flow that originated from each node at time t1. Traffic flow lm(t1) that originated from node m, and traffic flow dm(t1) that ends at node m. LB represents the lower bound on the traffic flow that starts and ends at node m on time t1, which is calculated by local road traffic information, and α is the discount parameter. Here we set α = 0.8. 
	 
	Figure
	We add these traffic flow constraints into the model by using slack variables. 
	Adding a constraint around symmetricity: Based on our intuition, the input traffic flow and output traffic flow should not have big difference. Thus, we also introduce a constraint to 
	ensure this property. The traffic flow fij from region i to region j should be similar to the traffic flow fji from region j to region i over a day.  
	 
	Figure
	Here we define fij = . Similarly, we append this symmetric constraint into our model. We solve the optimization problem to identify OD outcomes for each of our SPAs over each time interval. An example is shown in Figure 2. 
	Figure
	Figure 2. Weekday traffic flow 2020.05.18-2020.05.29 (with local road lower bound and symmetricity constraints). 
	 
	Figure
	This process was repeated for every interval. These outcomes were then used in the dynamic transmission model of disease, which we turn to next. 
	 
	Dynamic Transmission Model 
	Model Structure 
	In Aim 2, we used the inferred origin-destination values in a dynamic transmission network model across different areas of LA. To capture COVID-19 disease dynamics, we propose using a compartment model of disease where populations may flow between different health/treatment states (Susceptible, Exposed, Infected, Unidentified Infected, Identified Infected, Hospitalized, Recovered, Vaccinated, and Dead, shown in Figure 3) (Grant, 2020; Kermack et al., 1927). The rate of flow between these compartments is det
	infected individuals in both areas. This mixing pattern between areas is described by a matrix which was be informed by traffic data.  
	Figure
	Figure . Model Schematic. 
	Figure . Model Schematic. 
	Figure

	The corresponding ordinary differential equations are: 
	 
	 
	Figure
	 
	In the next sections, we discuss how we identify values for these equations; after parameterization, we implement these equations in Python (using scipy.integrate.odeint) and simulate disease spread over time. 
	 
	Time Intervals 
	To better match empirically observed disease trends, we allow the model parameters to vary over time, which we have split into different intervals, listed in Table 1 below. Values within the same interval remain constant; these constraints reduce overfitting but allow us the flexibility associated with a time-varying model. While the model remains sensitive to these interval 
	assumptions, we leave further exploration of these choices to future work due to the limited duration of this project. 
	 
	Table 1. Intervals in disease model 
	Interval (Days from 3/1 2020) 
	Interval (Days from 3/1 2020) 
	Interval (Days from 3/1 2020) 
	Interval (Days from 3/1 2020) 
	Interval (Days from 3/1 2020) 

	Months 
	Months 

	Description 
	Description 


	0-45 
	0-45 
	0-45 

	March - Mid April 
	March - Mid April 

	First lock-down 
	First lock-down 


	46-90 
	46-90 
	46-90 

	Mid April - End May 
	Mid April - End May 

	Lock-down & social events 
	Lock-down & social events 


	91-135 
	91-135 
	91-135 

	June - Mid July 
	June - Mid July 

	Gradual re-opening & looser rules 
	Gradual re-opening & looser rules 


	136-210 
	136-210 
	136-210 

	Mid July - End Sep 
	Mid July - End Sep 

	Second wave 
	Second wave 


	211-300 
	211-300 
	211-300 

	Oct - End Dec 
	Oct - End Dec 

	Holiday season 
	Holiday season 


	301-360 
	301-360 
	301-360 

	End Dec - March 
	End Dec - March 

	Vaccination1 
	Vaccination1 


	361-390 
	361-390 
	361-390 

	March - April 
	March - April 

	Vaccination2 
	Vaccination2 


	391-480 
	391-480 
	391-480 

	April - June 
	April - June 

	Vaccination3 
	Vaccination3 


	481-516 
	481-516 
	481-516 

	June - July 
	June - July 

	Variants 
	Variants 




	 
	Calibration 
	We draw model parameters from values in the literature. However, not all values are directly observable (e.g., the rate of becoming transmissive for unidentified cases). We therefore calibrate the model by changing the following calibrated parameters: 
	 
	Table 2: Calibration Parameters 
	Parameter 
	Parameter 
	Parameter 
	Parameter 
	Parameter 

	Description 
	Description 


	𝑆𝐼 
	𝑆𝐼 
	𝑆𝐼 

	Multiplier for 𝛽𝐼, where 𝛽𝐼= 𝑆𝐼× traffic flow 
	Multiplier for 𝛽𝐼, where 𝛽𝐼= 𝑆𝐼× traffic flow 


	𝑆𝑈 
	𝑆𝑈 
	𝑆𝑈 

	Multiplier for 𝛽𝑈, where 𝛽𝑈= 𝑆𝑈× traffic flow 
	Multiplier for 𝛽𝑈, where 𝛽𝑈= 𝑆𝑈× traffic flow 


	𝛾𝐼 
	𝛾𝐼 
	𝛾𝐼 

	Recovery rate for identified infectious individuals 
	Recovery rate for identified infectious individuals 


	𝛾𝑈 
	𝛾𝑈 
	𝛾𝑈 

	Recovery rate for unidentified infectious individuals 
	Recovery rate for unidentified infectious individuals 


	𝛾𝐻 
	𝛾𝐻 
	𝛾𝐻 

	Recovery rate for hospitalized individuals 
	Recovery rate for hospitalized individuals 


	𝜇𝐼 
	𝜇𝐼 
	𝜇𝐼 

	Death rate for identified infectious individuals 
	Death rate for identified infectious individuals 


	𝜇𝑈 
	𝜇𝑈 
	𝜇𝑈 

	Death rate for unidentified infectious individuals 
	Death rate for unidentified infectious individuals 


	𝜇𝐻 
	𝜇𝐻 
	𝜇𝐻 

	Death rate for hospitalized individuals 
	Death rate for hospitalized individuals 


	𝛿𝐼 
	𝛿𝐼 
	𝛿𝐼 

	Rate from exposed to identified infectious 
	Rate from exposed to identified infectious 


	𝛿𝑈 
	𝛿𝑈 
	𝛿𝑈 

	Rate from exposed to unidentified infectious 
	Rate from exposed to unidentified infectious 


	𝜂 
	𝜂 
	𝜂 

	Rate from identified infectious to hospitalized 
	Rate from identified infectious to hospitalized 


	𝜃 
	𝜃 
	𝜃 

	Multiplier on the rate from unidentified infectious to hospitalized, the rate is  𝜂∗𝜃 
	Multiplier on the rate from unidentified infectious to hospitalized, the rate is  𝜂∗𝜃 


	𝜔 
	𝜔 
	𝜔 

	Rate from vaccinated to exposed 
	Rate from vaccinated to exposed 


	𝜉 
	𝜉 
	𝜉 

	Vaccination rate for susceptible group 
	Vaccination rate for susceptible group 


	𝜉′ 
	𝜉′ 
	𝜉′ 

	Vaccination rate for recovered group 
	Vaccination rate for recovered group 




	 
	These values are set such that the simulation output is matches the following calibration targets:  
	 
	Table 3: Calibration Targets. 
	Targets 
	Targets 
	Targets 
	Targets 
	Targets 

	Description 
	Description 


	𝐷𝑖,𝑡 
	𝐷𝑖,𝑡 
	𝐷𝑖,𝑡 

	Cumulative Death number for SPA i at time t 
	Cumulative Death number for SPA i at time t 


	𝐶𝑖,𝑡 
	𝐶𝑖,𝑡 
	𝐶𝑖,𝑡 

	Cumulative identified Case number for SPA i at time t 
	Cumulative identified Case number for SPA i at time t 




	𝑉𝑖,𝑡 
	𝑉𝑖,𝑡 
	𝑉𝑖,𝑡 
	𝑉𝑖,𝑡 
	𝑉𝑖,𝑡 

	Vaccination number (first dose) for SPA i at time t 
	Vaccination number (first dose) for SPA i at time t 


	𝐻𝑡 
	𝐻𝑡 
	𝐻𝑡 

	Hospitalization number at time t 
	Hospitalization number at time t 




	 
	The calibration process involves solving the following optimization problem: 
	 
	 
	Figure
	 
	where 𝐷̂𝑖,𝑡 is the simulated death number for SPA 𝑖 at time 𝑡. 𝐻̂𝑖,𝑡 is the simulated hospitalized number for SPA 𝑖 at time 𝑡. 𝑅̂𝑖,𝑡 is the simulated recovered number for SPA 𝑖 at time 𝑡. 𝐼̂𝑖,𝑡 is the simulated identified infectious number for SPA 𝑖 at time 𝑡. 𝑉̂𝑖,𝑡 is the simulated vaccinated number for SPA 𝑖 at time 𝑡. 𝐷𝑖,𝑡 is the actual death number for SPA 𝑖 at time 𝑡. 𝐶𝑖,𝑡 is the actual cumulative identified case number for SPA 𝑖 at time 𝑡. 𝑉𝑖,𝑡 is the actual vacci
	 
	For each of the intervals listed above, we run the ordinary least squares model with this cost function as the objective. We use the calibrated parameter set from the last interval as the initialization point for the current interval. The calibration process is done in Python 3.7.   
	 
	Results 
	Dynamic Transmission Model Calibration Outcomes 
	Calibration outcome values are shown in the Appendix.  We show the simulation output compared to empirical data in Figure 4. Panel a through d depicts the deaths, vaccination counts, cases, and hospitalizations, respectively.  While there is some noise, we can see that the model outputs seem to capture the general trends seen in the empirical data. While it may be useful to compare outcomes with and without traffic data, this would involve a recalibration of the model, which, due to time constraints, was le
	 
	Figure 4. Calibration Results. 
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	Model Results 
	With the model calibrated, we can turn to using the model to perform prediction and simulating counterfactual scenarios. We plot projections for COVID-19 going up to November 2021 in the following Figure 5 and 6, which also provides model outcomes on unobserved values (such as unidentified infected cases). 
	 
	Figure 5. Model Outcomes. 
	 
	Figure
	 
	We additionally provide Figure 6 to better visualize the action between 0 and 1 million in Figure 5. 
	 
	Figure 6. Model Outcomes (Zoomed In) 
	 
	Figure
	These outcomes show that we expect most of the population to be either recovered or vaccinated (and not susceptible) by November 2021, which should greatly reduce the number 
	of new infections. However, this model does not take into account new variants, which we already know will play an increasingly large role as mutations occur.  
	 
	Despite this limitation, we believe the model’s insights into the ratio of unidentified versus identified cases, effectiveness in vaccination, etc., can still be useful, particularly in explaining trends in the data over the past year.  Future projections will heavily depend on policy responses (lockdowns, vaccination booster shots, flu season, new travel, etc.), and therefore continues to be challenging. 
	 
	 
	Conclusions 
	This work demonstrates that transmission models can be useful for understanding disease trends, and that such models can incorporate traffic flow patterns. We drew on methodology from infectious disease models, traffic data, and facility location models together in a novel way, and to our knowledge, no prior work has leveraged such detailed traffic information over such a large urban area to inform disease control efforts.  
	We find that it is possible to incorporate traffic data into compartmental models. The model estimates that the number of recovered and vaccinated individuals in the population is substantial, indicating that the completely susceptible proportion of the population is likely small -- good news if we want to reduce the number of new cases. However, challenges for disease control remain, as variants (which were not included in the model) begin to play a larger role in the number of new cases and deaths. 
	 
	Directions for Future Research 
	There remains much work to be done to translate these findings into actionable policy. We ultimately intend for these results to inform the placement of testing sites across the health districts. Achieving this goal would necessitate further stratification of the dynamic transmission model (and traffic data) by health district in addition to service planning area.  
	 
	This presents additional challenges when calibrating the model, as limited data is available at such fine geographical resolution. Upon calibration, the model would then be used for predicting disease burden in each location. This information could then be used to prioritize districts for testing. Recommendations for the placement of testing center would additionally consider the ease to which individuals could access the site by incorporating road information to and from the selected locations for testing 
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	Data Management Plan   
	 
	Products of Research  
	No data was collected for this study. We used ADMS data and values from the existing literature to parameterize the model. 
	 
	Data Format and Content  
	ADMS data was accessed through the online portal. 
	 
	Data Access and Sharing  
	Requests to access to the ADMS data should be sent to Genevieve Giuliano <
	Requests to access to the ADMS data should be sent to Genevieve Giuliano <
	giuliano@price.usc.edu
	giuliano@price.usc.edu

	>. 

	 
	Reuse and Redistribution  
	ADMS access is restricted. Data access must be requested. 
	 
	  
	Appendix  
	Dynamic Transmission Model Calibration Outcomes 
	 
	Traffic Status 
	Traffic Status 
	Traffic Status 
	Traffic Status 
	Traffic Status 

	Period 
	Period 

	𝑆𝐼 
	𝑆𝐼 

	𝑆𝑈 
	𝑆𝑈 

	𝛾𝐼 
	𝛾𝐼 

	𝛾𝑈 
	𝛾𝑈 

	𝛾𝐻 
	𝛾𝐻 

	𝜇𝐼 
	𝜇𝐼 

	𝜇𝑈 
	𝜇𝑈 

	𝜇𝐻 
	𝜇𝐻 


	lockdown 
	lockdown 
	lockdown 

	March - Mid April 
	March - Mid April 

	0.00292 
	0.00292 

	0.00229 
	0.00229 

	0.081 
	0.081 

	0.085 
	0.085 

	0.061 
	0.061 

	0.00091 
	0.00091 

	0.00050 
	0.00050 

	0.01530 
	0.01530 


	lockdown 
	lockdown 
	lockdown 

	Mid-April - End May 
	Mid-April - End May 

	0.00247 
	0.00247 

	0.00208 
	0.00208 

	0.255 
	0.255 

	0.234 
	0.234 

	0.389 
	0.389 

	0.00163 
	0.00163 

	0.00221 
	0.00221 

	0.01320 
	0.01320 


	reopening 
	reopening 
	reopening 

	June - Mid July 
	June - Mid July 

	0.00338 
	0.00338 

	0.00432 
	0.00432 

	0.255 
	0.255 

	0.235 
	0.235 

	0.389 
	0.389 

	0.00209 
	0.00209 

	0.00340 
	0.00340 

	0.01330 
	0.01330 


	2nd wave 
	2nd wave 
	2nd wave 

	Mid July - End Sep 
	Mid July - End Sep 

	0.00365 
	0.00365 

	0.00331 
	0.00331 

	0.209 
	0.209 

	0.943 
	0.943 

	0.357 
	0.357 

	0.00101 
	0.00101 

	0.00197 
	0.00197 

	0.01250 
	0.01250 


	holidays 
	holidays 
	holidays 

	Oct - End Dec 
	Oct - End Dec 

	0.00984 
	0.00984 

	0.00664 
	0.00664 

	0.210 
	0.210 

	0.943 
	0.943 

	0.357 
	0.357 

	0.00211 
	0.00211 

	0.00258 
	0.00258 

	0.01260 
	0.01260 


	vaccination1 
	vaccination1 
	vaccination1 

	End Dec - March 
	End Dec - March 

	0.00869 
	0.00869 

	0.00825 
	0.00825 

	0.331 
	0.331 

	0.952 
	0.952 

	0.493 
	0.493 

	0.00093 
	0.00093 

	0.00113 
	0.00113 

	0.01020 
	0.01020 


	vaccination2 
	vaccination2 
	vaccination2 

	March - April 
	March - April 

	0.01480 
	0.01480 

	0.02380 
	0.02380 

	0.117 
	0.117 

	0.500 
	0.500 

	0.106 
	0.106 

	0.02620 
	0.02620 

	0.00884 
	0.00884 

	0.13200 
	0.13200 


	vaccination3 
	vaccination3 
	vaccination3 

	April - June 
	April - June 

	0.00120 
	0.00120 

	0.00100 
	0.00100 

	0.100 
	0.100 

	0.500 
	0.500 

	0.100 
	0.100 

	0.00100 
	0.00100 

	0.00100 
	0.00100 

	0.00100 
	0.00100 




	 
	 
	(Calibration outcomes, continued.) 
	Traffic Status 
	Traffic Status 
	Traffic Status 
	Traffic Status 
	Traffic Status 

	Period 
	Period 

	𝛿𝐼_i 
	𝛿𝐼_i 

	𝛿𝑈_u 
	𝛿𝑈_u 

	𝜂 
	𝜂 

	𝜃 
	𝜃 


	lockdown 
	lockdown 
	lockdown 

	March - Mid April 
	March - Mid April 

	0.08370 
	0.08370 

	0.19700 
	0.19700 

	0.02370 
	0.02370 

	0.50000 
	0.50000 


	lockdown 
	lockdown 
	lockdown 

	Mid-April - End May 
	Mid-April - End May 

	0.07000 
	0.07000 

	0.15900 
	0.15900 

	0.02370 
	0.02370 

	0.50000 
	0.50000 


	reopening 
	reopening 
	reopening 

	June - Mid July 
	June - Mid July 

	0.07000 
	0.07000 

	0.15900 
	0.15900 

	0.02370 
	0.02370 

	0.50000 
	0.50000 


	second wave 
	second wave 
	second wave 

	Mid July - End Sep 
	Mid July - End Sep 

	0.07000 
	0.07000 

	0.18500 
	0.18500 

	0.02370 
	0.02370 

	0.50000 
	0.50000 


	holidays 
	holidays 
	holidays 

	Oct - End Dec 
	Oct - End Dec 

	0.07110 
	0.07110 

	0.18500 
	0.18500 

	0.02370 
	0.02370 

	0.50000 
	0.50000 


	vaccination1 
	vaccination1 
	vaccination1 

	End Dec - March 
	End Dec - March 

	0.05760 
	0.05760 

	0.31400 
	0.31400 

	0.02370 
	0.02370 

	0.50000 
	0.50000 


	vaccination2 
	vaccination2 
	vaccination2 

	March - April 
	March - April 

	0.09990 
	0.09990 

	0.00106 
	0.00106 

	0.03410 
	0.03410 

	0.00326 
	0.00326 


	vaccination3 
	vaccination3 
	vaccination3 

	April - June 
	April - June 

	0.00262 
	0.00262 

	0.00100 
	0.00100 

	0.00151 
	0.00151 

	0.00100 
	0.00100 


	variants 
	variants 
	variants 

	June - July 
	June - July 

	0.06600 
	0.06600 

	0.02870 
	0.02870 

	0.00768 
	0.00768 

	0.00107 
	0.00107 




	 
	 
	(Calibration outcomes, continued.) 
	Traffic Status 
	Traffic Status 
	Traffic Status 
	Traffic Status 
	Traffic Status 

	Period 
	Period 

	𝜉 
	𝜉 

	𝜉′ for Identified 
	𝜉′ for Identified 

	𝜉′ for Unidentified  
	𝜉′ for Unidentified  

	𝜔 
	𝜔 


	lockdown 
	lockdown 
	lockdown 

	March - Mid April 
	March - Mid April 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 


	lockdown 
	lockdown 
	lockdown 

	Mid-April - End May 
	Mid-April - End May 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 


	reopening 
	reopening 
	reopening 

	June - Mid July 
	June - Mid July 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 


	second wave 
	second wave 
	second wave 

	Mid July - End Sep 
	Mid July - End Sep 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 


	holidays 
	holidays 
	holidays 

	Oct - End Dec 
	Oct - End Dec 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 

	N/A 
	N/A 


	vaccination1 
	vaccination1 
	vaccination1 

	End Dec - March 
	End Dec - March 

	0.00283 
	0.00283 

	0.00890 
	0.00890 

	0.08360 
	0.08360 

	0.00266 
	0.00266 


	vaccination2 
	vaccination2 
	vaccination2 

	March - April 
	March - April 

	0.01400 
	0.01400 

	0.00274 
	0.00274 

	0.00100 
	0.00100 

	0.00135 
	0.00135 


	vaccination3 
	vaccination3 
	vaccination3 

	April - June 
	April - June 

	0.02030 
	0.02030 

	0.00586 
	0.00586 

	0.00100 
	0.00100 

	0.00100 
	0.00100 


	variants 
	variants 
	variants 

	June - July 
	June - July 

	0.00700 
	0.00700 

	0.00188 
	0.00188 

	0.00103 
	0.00103 

	0.03260 
	0.03260 
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